
Lawrence Livermore National Laboratory

Carol S. Woodward

UCRL-PRES-213978

Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551!
This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

SUNDIALS: Suite of Nonlinear and
Differential/Algebraic Equation Solvers

2
Lawrence Livermore National Laboratory

Outline

  SUNDIALS Overview
  ODE and DAE integration

•  Initial value problems
•  Implicit integration methods

  Nonlinear Systems
•  Newton’s method and inexact Newton’s method
•  Preconditioning

  Sensitivity analysis
•  Definitions, applications, methods
•  Forward sensitivity analysis
•  Adjoint sensitivity analysis

  SUNDIALS: usage, applications, and availability
  Upcoming additions

3
Lawrence Livermore National Laboratory

LLNL has a long history of R&D in ODE/DAE methods
and software

  Fortran solvers written at LLNL:
•  VODE: stiff/nonstiff ODE systems, with direct linear solvers
•  VODPK: with Krylov linear solver (GMRES)
•  NKSOL: Newton-Krylov solver - nonlinear algebraic systems
•  DASPK: DAE system solver (from DASSL)

  Recent focus has been on sensitivity analysis

May 2009

4
Lawrence Livermore National Laboratory

Push to solve large, parallel systems motivated rewrites
in C

  CVODE: rewrite of VODE/VODPK [Cohen, Hindmarsh, 94]
  PVODE: parallel CVODE [Byrne and Hindmarsh, 98]
  KINSOL: rewrite of NKSOL [Taylor and Hindmarsh, 98]
  IDA: rewrite of DASPK [Hindmarsh and Taylor, 99]
  Sensitivity variants: SensPVODE, SensIDA, SensKINSOL [Brown,

Grant, Hindmarsh, Lee, 00-01]
  New sensitivity-capable solvers:

•  CVODES [Hindmarsh and Serban, 02]
•  IDAS [Serban, Petra, and Hindmarsh, 09]

  Organized into a single suite, SUNDIALS, including CVODE and
CVODES, IDA, IDAS, and KINSOL

5
Lawrence Livermore National Laboratory

  Philosophy: Keep codes simple to use
  Written in C

— Fortran interfaces: FCVODE, FIDA, and FKINSOL
— Matlab interfaces: sundialsTB (CVODES, IDA, & KINSOL)

  Written in a data structure neutral manner
— No specific assumptions about data
— Application-specific data representations can be used

  Modular implementation
— Vector modules
— Linear solver modules

  Require minimal problem information, but offer user control over
most parameters

SUNDIALS was designed to easily interface with legacy
codes

6
Lawrence Livermore National Laboratory

Initial value problems (IVPs) come in the form of ODEs
and DAEs

  The general form of an IVP is given by

00 x)t(x
0)x,x,t(F

=

=

  If is invertible, we solve for to obtain an ordinary
differential equation (ODE), but this is not always the best
approach

  Else, the IVP is a differential algebraic equation (DAE)

  A DAE has differentiation index i if i is the minimal number of
analytical differentiations needed to extract an explicit ODE

x/F ∂∂ x

7
Lawrence Livermore National Laboratory

Stiffness of an equation can significantly impact
whether implicit methods are needed

  (Ascher and Petzold, 1998): If the system has widely varying time
scales, and the phenomena that change on fast scales are stable,
then the problem is stiff

  Stiffness depends on
•  Jacobian eigenvalues, λj

•  System dimension
•  Accuracy requirements
•  Length of simulation

  In general a problem is stiff on [t0, t1] if

101 −<<ℜ−)(min)tt(jj
λ

8
Lawrence Livermore National Laboratory

Dalquist test problem shows impact of stability on step
sizes for explicit and implicit methods

Dalquist test equation:
Exact solution:

Absolute stability requirement

If Re(λ)<0, then |y(tn)| decays exponentially, and we cannot tolerate

growth in yn

Region of absolute stability of an integrator written as:
yn = R(z)yn-1, with time step z = hλ	

,yy λ= 0y)0(y =
nt

n ey)t(y λ
0=

,...,n,yy nn 211 =≤ −

{ }1≤∈=)z(R;CzS

9
Lawrence Livermore National Laboratory

Forward and backward Euler show different stability
restrictions

  Forward Euler:

So, if λ < 0, FE has the step size restriction:

  Backward Euler:

So, if λ < 0, BE has the step size restriction:

() λλ h1)z(Ryhyy 1n1nn +=⇒+= −−

λ
2h ≤

()
λ

λ
h1
1)z(Ryhyy n1nn −

=⇒+= −

0>h

10
Lawrence Livermore National Laboratory

Curtiss and Hirchfelder example

()() 5050 −=−−= λtcosyy

Solution curves

time

y

Forward Euler

h=2.01/50

11
Lawrence Livermore National Laboratory

Curtiss and Hirchfelder example

()() 5050 −=−−= λtcosyy

time

y

Implicit schemes

h=0.5 for BE Forward Euler

12
Lawrence Livermore National Laboratory

SUNDIALS has implementations of Linear Multistep
Methods (LMM)

  Two methods:
•  Adams-Moulton (nonstiff); K1 = 1, K2 = k, k = 1,…,12
•  BDF (stiff); K1 = k, K2 = 0, k = 1,…,5

  Nonlinear systems (BDF)
•  ODE:

•  DAE:

General form of LMM: ∑ ∑
= =

−− =+
1 2

0 0
0

K

i

K

i
ini,nnini,n yhy βα

() () 0yy,tfhyyG
k

1i
ini,nnn0nn =−−≡ ∑

=
−αβ()yfy =

() 0=y,yF () () 0y,yh,tFyG n

k

1i
ini,n

1
n0n =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≡ ∑

=
−

− αβ

13
Lawrence Livermore National Laboratory

Stability is very restricted for higher orders of BDF
methods

∑
=

−=−
k

i
ini,nnnn yyhy

1
0 αβ

Regions of instability grow
with the order

CVODE and IDA allow up to
order 5

CVODE includes an
optional stability limit
detection algorithm:
  Based on linear analysis
  Limits step if it detects a

potential stability
problem

Stability region OUTSIDE shaded area

Re(z)

Im
(z

)

14
Lawrence Livermore National Laboratory

CVODE solves

  Variable order and variable step size methods:
•  BDF (backward differentiation formulas) for stiff systems
•  Implicit Adams for nonstiff systems

  (Stiff case) Solves time step for the system
•  applies an explicit predictor to give yn(0)

•  applies an implicit corrector with yn(0) as the initial guess

)y,t(fy =

∑
=

− +=
q

j
nnjnjn)y(ftyy

1
0βΔα

∑
=

−− +=
q

j
n

p
jn

p
j)(n ytyy

1
110 βΔα

)y,t(fy =

15
Lawrence Livermore National Laboratory

Time steps are chosen to minimize the local truncation
error

  Time steps are chosen by:
•  Estimate the error: E(Δt) = C(yn - yn(0))
- Accept step if ||E(Δt)||WRMS < 1
- Reject step otherwise

•  Estimate error at the next step, Δt’, as

•  Choose next step so that ||E(Δt’)|| WRMS < 1
  Choose method order by:

•  Estimate error for next higher and lower orders
•  Choose the order that gives the largest time step meeting the

error condition

)t(E)tt()t(E q ΔΔΔΔ 1+ʹ′≈ʹ′

16
Lawrence Livermore National Laboratory

Computations weighted so no component
disproportionally impacts convergence

  An absolute tolerance is specified for each solution component,
ATOLi

  A relative tolerance is specified for all solution components, RTOL

  Norm calculations are weighted by:

  Bound time integration error with:

 The 1/6 factor tries to account for estimation errors

ii
i

ATOLyRTOL
1ewt
+⋅

= () yewt1 y
1

2i
WRMS ∑

=

⋅=
N

i

i

N

6
1 y 0n <−)(ny

17
Lawrence Livermore National Laboratory

Nonlinear system will require nonlinear solves

  Use predicted value as the initial iterate for the nonlinear solver
  Nonstiff systems: Functional iteration

  Stiff systems: Newton iteration

•  ODE:

•  DAE:

() ∑
=

−+ +=
q

1i
ini,n)m(nn0)1m(n yyfhy αβ

() ())m(n)m(n)m(n yGyyM −=−+1

nh,yfIM 0βγγ =∂∂−≈

()nh,yFyFM 01 βγγ =∂∂+∂∂≈

18
Lawrence Livermore National Laboratory

SUNDIALS provides many options for linear solvers

  Iterative linear solvers
•  Result in inexact Newton solver
•  Scaled preconditioned solvers: GMRES, Bi-CGStab, TFQMR
•  Only require matrix-vector products
•  Require preconditioner for the Newton matrix, M

  Jacobian information (matrix or matrix-vector product) can be
supplied by the user or estimated with finite difference quotients

  Two options require serial environments and some pre-defined
structure to the data
•  Direct dense
•  Direct band

19
Lawrence Livermore National Laboratory

An inexact Newton-Krylov method can be used to solve
the implicit systems

  Krylov iterative methods find the linear system solution in a
Krylov subspace:

  Only require matrix-vector products

  Difference approximations to the matrix-vector product are used,

  Matrix entries need never be formed, and memory savings can
be used for a better preconditioner

θ
θ)x(F)vx(Fv)x(J −+

≈

}...,rJ,Jr,r{)r,J(K 2=

20
Lawrence Livermore National Laboratory

IDA solves F(t, y, y’) = 0

  C rewrite of DASPK [Brown, Hindmarsh, Petzold]
  Variable order / variable coefficient form of BDF
  Targets: implicit ODEs, index-1 DAEs, and Hessenberg index-2

DAEs
  Optional routine solves for consistent values of y0 and y0’

•  Semi-explicit index-1 DAEs, differential components known,
algebraic unknown OR all of y0’ specified, y0 unknown

  Nonlinear systems solved by Newton-Krylov method

  Optional constraints: yi > 0, yi < 0, yi ≥ 0, yi ≤ 0

21
Lawrence Livermore National Laboratory

CVODE and IDA are equipped with a rootfinding
capability

  Finds roots of user-defined functions, gi(t,y) or gi(t,y, y’)
  Roots are found by looking at sign changes, so only roots of odd

multiplicity are found
  Checks each time interval for sign change

•  When sign changes are found, apply a modified secant method
•  Tight tolerance: τ = 100 ∗ U ∗ (|tn| + |Δt|); U = unit roundoff

  Checks for gi(t,y) = 0 every time gi is evaluated; if gi(t,y) = 0, then
root is reported

  If gi(t*,y) = 0 for some t*
•  gi(t*+δ,y) is computed for some small δ in direction of integration
•  Integration stops if any gi(t+δ,y) = 0
•  Ensures values of gi are nonzero at some past value of t,

beyond which a search for roots is done

22
Lawrence Livermore National Laboratory

KINSOL solves F(u) = 0

  C rewrite of Fortran NKSOL (Brown and Saad)
  Inexact Newton solver: solves J Δun = -F(un) approximately
  Modified Newton option (with direct solves) – this freezes the

Newton matrix over a number of iterations
  Krylov solver: scaled preconditioned GMRES, TFQMR, Bi-CGStab

•  Optional restarts for GMRES
•  Preconditioning on the right: (J P-1)(Ps) = -F

  Direct solvers: dense and band (serial & special structure)
  Optional constraints: ui > 0, ui < 0, ui ≥ 0 or ui ≤ 0
  Can scale equations and/or unknowns
  Dynamic linear tolerance selection

23
Lawrence Livermore National Laboratory

1.  Starting with x0, want x* such that F(x*) = 0

2.  Repeat for each k until

a.  Solve (approximately)

b.   Update, xk+1 = xk + λsk

An inexact Newton’s method is used to solve the
nonlinear problem

)x(Fs)x(J kkk −=

tol)x(F 1k ≤+

  tol may be chosen adaptively
based on accuracy requirements

  λ is a search parameter
  ||.|| is a weighted L-2 norm

co
ur

te
sy

 o
f D

. R
ey

no
ld

s
(S

M
U

)

24
Lawrence Livermore National Laboratory

Linear stopping tolerances must be chosen to prevent
“oversolves”

  Newton method assumes a linear model

•  Bad approximation far from solution, loose tol.

•  Good approximation close to solution, tight tol.

  Eisenstat and Walker (SISC 96)

•  Choice 1

•  Choice 2

  ODE literature

()2)1k()k(k FF9.0 −=η

1111 −−−− −−= kkkkkk FsJFFη

05.0=kη

)x(Fs)x(J)x(F kk1kkk η≤+ +

The linear system is solved to a given tolerance:

25
Lawrence Livermore National Laboratory

Inexact methods maintain the fast rate of convergence
of Newton’s method

  Convergence of Newton’s method is q-quadratic locally, for some
constant C

  Convergence of an inexact Newton method is

•  q-linear if is constant in k

•  q-super-linear if

•  q-quadratic if for some constant C

  Eisenstat and Walker methods are q-quadratic

2*k*1k xxCxx −≤−+

0lim k

k
=

∞→
η

2k1kkk)x(FCs)x(J)x(F ≤+ +

kη

26
Lawrence Livermore National Laboratory

Line-search globalization for Newton’s method can
enhance robustness

  User can select:

•  Inexact Newton

•  Inexact Newton with line search

  Line searches can provide more flexibility in the initial guess (larger
time steps)

  Take, xk+1 = xk + λsk+1, for λ chosen appropriately (to satisfy the
Goldstein-Armijo conditions):

•  sufficient decrease in F relative to the step length

•  minimum step length relative to the initial rate of decrease

•  full Newton step when close to the solution

27
Lawrence Livermore National Laboratory

Preconditioning is essential for large problems as
Krylov methods can stagnate

  Preconditioner P must approximate Newton matrix, yet be
reasonably efficient to evaluate and solve.

  Typical P (for time-dep. ODE problem) is
  The user must supply two routines for treatment of P:

•  Setup: evaluate and preprocess P (infrequently)
•  Solve: solve systems Px=b (frequently)

  User can save and reuse approximation to J, as directed by the
solver

  SUNDIALS offers hooks for user-supplied preconditioning
•  Can use hypre or PetSc or …

  Band and block-banded preconditioners are supplied for use with
the supplied vector structure

JJJI ≈− ~,~γ

28
Lawrence Livermore National Laboratory

Sensitivity Analysis

  Sensitivity Analysis (SA) is the study of how the variation in the output
of a model (numerical or otherwise) can be apportioned, qualitatively or
quantitatively, to different sources of variation in inputs.

  Applications:
•  Model evaluation (most and/or least influential parameters), Model

reduction, Data assimilation, Uncertainty quantification,
Optimization (parameter estimation, design optimization, optimal
control, …)

  Approaches:
•  Forward sensitivity analysis
•  Adjoint sensitivity analysis

29
Lawrence Livermore National Laboratory

Sensitivity Analysis Approaches

Computational cost:
(1+Np)Nx increases with Np

⎩
⎨
⎧

=

=

)()0(
0),,,(

0 pxx
ptxxF

p
ii

pixix Ni
dpdxs
FsFsF

i ,,1,
)0(

0

0

…
 =

⎩
⎨
⎧

=

=++

px gsg
dp
dg

pxtg

+=

),,(

()TT
pxpp

T

xFdtFg
dp
dG

dtpxtgpxG

00
**

0

)(

),,(),(

∫

∫

−−=

=

λλ

⎪⎩

⎪
⎨
⎧

==

−=−ʹ′

TtxF
gFF

px

xxx

at...
)(

*

**

λ

λλ

Parameter dependent system

 FSA

ASA

Computational cost:

(1+Ng)Nx increases with Ng

30
Lawrence Livermore National Laboratory

FSA - Methods

  Staggered Direct Method: On each time step, converge Newton
iteration for state variables, then solve linear sensitivity system
•  Requires formation and storage of Jacobian matrices, Not matrix-free,

Errors in finite-difference Jacobians lead to errors in sensitivities
  Simultaneous Corrector Method: On each time step, solve the

nonlinear system simultaneously for solution and sensitivity variables
•  Block-diagonal approximation of the combined system Jacobian, Requires

formation of sensitivity R.H.S. at every iteration
  Staggered Corrector Method: On each time step, converge Newton

for state variables, then iterate to solve sensitivity system
•  With Krylov

31
Lawrence Livermore National Laboratory

FSA – Generation of the sensitivity system

  Analytical
  Automatic differentiation

•  ADIFOR, ADIC, ADOLC
•  complex-step derivatives

  Directional derivative approximation

),min(
2

),,(),,(

),1max(
1

),max(

2
),,(),,(

2
),,(),,(

xi
iiii

i
i

iWRMSii
x

ii

i

iiii

i

x

ixix
i

epsxtfepsxtf
p
fs

x
f

or
ps

rtolp

epxtfepxtf
p
f

psxtfpsxtfs
x
f

σσσ
σ

σσσσ

σ
σ

εσ

σ
σσ

σ
σσ

=
−−−++

≈
∂
∂

+
∂
∂

⎪
⎩

⎪
⎨

⎧

=

=

−−+
≈

∂
∂

−−+
≈

∂
∂

i
ii p

fs
x
fs

pxtfx

∂
∂

+
∂
∂

=

=

),,(

CVODES case

32
Lawrence Livermore National Laboratory

ASA – Implementation

  Solution of the forward problem is required for the adjoint problem
need predictable and compact storage of solution values for the
solution of the adjoint system

  Cubic Hermite or variable-degree polynomial interpolation
  Simulations are reproducible from each checkpoint
  Force Jacobian evaluation at checkpoints to avoid storing it
  Store solution and first derivative
  Computational cost: 2 forward and 1 backward integrations

t0 tf
ck0 ck1 ck2 …

Checkpointing

33
Lawrence Livermore National Laboratory

ASA – Generation of the sensitivity system

  Analytical
•  Tedious
•  For PDEs: in general, adjoint and discretization operators do NOT

commute

  Automatic differentiation
•  Certainly the most attractive alternative
•  Reverse AD tools not as mature as forward AD tools

  Finite difference approximation
•  NOT an option (computational cost equivalent to FSA!)

34
Lawrence Livermore National Laboratory

The SUNDIALS vector module is generic

  Data vector structures can be user-supplied
  The generic NVECTOR module defines:

•  A content structure (void *)
•  An ops structure – pointers to actual vector operations supplied by

a vector definition
  Each implementation of NVECTOR defines:

•  Content structure specifying the actual vector data and any
information needed to make new vectors (problem or grid data)

•  Implemented vector operations
•  Routines to clone vectors

  Note that all parallel communication resides in reduction operations:
dot products, norms, mins, etc.

35
Lawrence Livermore National Laboratory

SUNDIALS provides serial and parallel NVECTOR
implementations

  Use is optional

  Vectors are laid out as an array of doubles (or floats)
  Appropriate lengths (local, global) are specified
  Operations are fast since stride is always 1
  All vector operations are provided for both serial and parallel cases
  For the parallel vector, MPI is used for global reductions

  These serve as good templates for creating a user-supplied vector
structure around a user’s own existing structures

36
Lawrence Livermore National Laboratory

SUNDIALS provides Fortran interfaces

  CVODE, IDA, and KINSOL
  Cross-language calls go in both directions:
  Fortran user code interfaces CVODE/KINSOL/IDA

  Fortran main interfaces to solver routines
  Solver routines interface to user’s problem-defining routine and

preconditioning routines

  For portability, all user routines have fixed names
  Examples are provided

37
Lawrence Livermore National Laboratory

SUNDIALS provides Matlab interfaces

  CVODES, KINSOL, and IDAS
  The core of each interface is a single MEX file which interfaces to

solver-specific user-callable functions
  Guiding design philosophy: make interfaces equally familiar to both

SUNDIALS and Matlab users
•  all user-provided functions are Matlab m-files
•  all user-callable functions have the same names as the

corresponding C functions
•  unlike the Matlab ODE solvers, we provide the more flexible

SUNDIALS approach in which the 'Solve' function only returns the
solution at the next requested output time.

  Includes complete documentation (including through the Matlab help
system) and several examples

38
Lawrence Livermore National Laboratory

Structure of SUNDIALS

39
Lawrence Livermore National Laboratory

SUNDIALS code usage is similar across the suite

  Have a series of Set/Get routines to set options
  For CVODE with parallel vector implementation:

 #include “cvode.h”
 #include “cvode_spgmr.h”
 #include “nvector_*.h”

 y = N_VNew_*(n,…);
 cvmem = CVodeCreate(CV_BDF,CV_NEWTON);
 flag = CVodeSet*(…);
 flag = CVodeInit(cvmem,rhs,t0,y,…);
 flag = CVSpgmr(cvmem,…);
 for(tout = …) {
 flag = CVode(cvmem, …,y,…); }

 NV_Destroy(y);
 CVodeFree(&cvmem);

40
Lawrence Livermore National Laboratory

Forward Sensitivity Analysis in SUNDIALS

User main routine
Specification of problem parameters
Activation of sensitivity computation
User problem-defining function
User preconditioner function

Options
-  sensitivity approach (simultaneous or staggered)
-  sensitivity residuals: analytical, FD(DQ), AD, CS
-  error control on sensitivity variables
-  user-defined tolerances for sensitivity variables

Band
Linear
Solver

Preconditioned
Iterative
Linear Solver

General
Preconditioner
Modules

Vector
Kernels

Dense
Linear
Solver

CVODES
ODE
Integrator

IDAS
DAE
Integrator

41
Lawrence Livermore National Laboratory

 #include “cvodes.h”
 #include “cvodes_spgmr.h”
 #include “nvector_*.h”

 y = N_VNew*(n,…);
 cvmem = CVodeCreate(CV_BDF,CV_NEWTON);
 flag = CVodeSet*(…);
 flag = CVodeMalloc(cvmem,rhs,t0,y,…);
 flag = CVSpgmr(cvmem,…);
 yS = N_VNewVectorArray_*(Ns,…);
 flag = CVodeSetSens*(…);
 flag = CVodeSensMalloc(cvmem,…,yS);
 for(tout = …) {
 flag = CVode(cvmem, …,y,…);
 flag = CVodeGetSens(cvmem,t,yS);
 }
 NV_Destroy(y);
 NV_DestroyVectorArray(yS,Ns);
 CVodeFree(&cvmem);

Forward Sensitivity Analysis in SUNDIALS

42
Lawrence Livermore National Laboratory

Adjoint Sensitivity Analysis in SUNDIALS

User main routine
Activation of sensitivity computation
User problem-defining function
User reverse function
User preconditioner function
User reverse preconditioner function

(Modified)
Vector
Kernels

Implementation
-  check point approach; total cost is 2 forward
solutions + 1 backward solution
-  integrate any system backwards in time
-  may require modifications to some user-defined
vector kernels

CVODES
ODE

Integrator

IDAS
DAE

Integrator

Band
Linear
Solver

Preconditioned
Iterative

Linear Solver

General
Preconditioner

Modules

Dense
Linear
Solver

43
Lawrence Livermore National Laboratory

Adjoint Sensitivity Analysis in SUNDIALS

 #include “cvodes.h”
 #include “cvodea.h”
 #include “cvodes_spgmr.h”
 #include “nvector_*.h”

 y = N_VNew_*(n,…);
 cvmem = CVodeCreate(CV_BDF,CV_NEWTON);
 CVodeSet*(…); CVodeMalloc(…); CVSpgmr(…);

 cvadj = CVadjMalloc(cvmem,STEPS);
 flag = CVodeF(cvadj,…,&nchk);
 yB = N_VNew_*(nB,…);
 CVodeSet*B(…); CVodeMallocB(…); CVSpgmrB(…);
 for(tout = …) {
 flag = CVodeB(cvadj, …,yB,…);
 }
 NV_Destroy(y);
 NV_Destroy(yB);
 CVodeFree(&cvmem);
 CVadjFree(&cvadj);

44
Lawrence Livermore National Laboratory

Upcoming additions to SUNDIALS

  Accelerated fixed point nonlinear solver
•  Anderson acceleration: preliminary version in place, now

refining

  Vector kernels supporting multi/many core architectures

  Time integrators for multi-rate problems: ARKODE from Dan
Reynolds (SMU)

45
Lawrence Livermore National Laboratory

The ARKODE Solver

We are currently working on a new solver that will extend
SUNDIALS to support multi-rate systems of ordinary differential
equations.

Like CVODE, this solver applies advanced error estimators and
adaptive time stepping to efficiently evolve systems of ODEs

Unlike CVODE, this solver allows a user to decompose the ODE
system into “fast” and “slow” components, applying implicit and
explicit solvers to these components, respectively

46
Lawrence Livermore National Laboratory

The ARKODE Design

ARKODE solvers are based on additive Runge-Kutta (ARK)
methods

• Comprised of a pair of explicit and diagonally-implicit Runge-
Kutta methods
• ERK and DIRK methods derived in coordination, to guarantee
accuracy of each method as well as their coupling

Built-in coefficients providing from 3rd to 5th order accurate
methods

May also be run in purely explicit or purely implicit mode

One step (multi stage) solvers that work naturally with spatially-
adaptive PDE simulations

47
Lawrence Livermore National Laboratory

The ARKODE Algorithms
Data structures and iterative solvers used within ARKODE match
the rest of SUNDIALS

General vector-based implementation, for serial, parallel, or user-
defined data structures

Inexact Newton methods, with preconditioned Krylov linear
solvers for parallel and serial problems

Modified Newton methods with LAPACK linear solvers for serial
problems

For more information: http://faculty.smu.edu/reynolds/
arkode

48
Lawrence Livermore National Laboratory

Applications of SUNDIALS

  CVODE and KINSOL are being used in parallel fusion simulations at SMU

  KINSOL is being used to solve for implicit hydrodynamics in core collapse
supernova simulations at SUNY-Stony Brook

  Parallel CVODE is being used in a 3D tokamak turbulence model (BOUT+
+) in LLNL’s Magnetic Fusion Energy Division.

  KINSOL with a HYPRE multigrid preconditioner is being applied to solve a
nonlinear Richards’ equation for pressure in porous media flows.

  CVODE, KINSOL, IDA, with MG preconditioner, are being used to solve 3D
neutral particle transport problems in CASC.

  …

49
Lawrence Livermore National Laboratory

Applications with sensitivity analysis

  CVODES used for sensitivity analysis of chemically reacting flows
(SciDAC collaboration with Sandia Livermore).

  CVODES used for sensitivity analysis of radiation transport (diffusion
approximation).

  KINSOL+CVODES used for inversion of large-scale time-dependent
PDEs (atmospheric releases).

  …

50
Lawrence Livermore National Laboratory

Stellar collapse simulations must deliver high accuracy
over long time periods

  Evolve by fusion burning, iron core
collapse, blow up, and neutrino radiation
cooling

  Stellar collapse, supernova explosion, and
neutron star formation is one of the most
energetic, but poorly understood,
phenomena in astrophysics

  Models: of radiation transport,
hydrodynamics & self-gravity

  Neutrinos carry off ~99% of energy; 1% is
observed (have to model this)

He C,O
C Ne,Mg

H He

O S,Si

 Fe

S,Si Fe

Onionskin-like structure

ΔtCFL,core(10-7 s) < desired step < ΔtCFL,shock(~10-4 s) < tcooling(10s)

51
Lawrence Livermore National Laboratory

We model the hydrodynamics with a Lagrangian
formulation and pose the discrete system as a DAE

Lagrangian Eqns
(fluid flow) Self-gravity Conservation form + +

=>
Stellar collapse hydrodynamics model

gravityself −=

−+=
−

−
−

,)U(G

),U(F)()U(F
t

)U(V)U(V

n

nn
nn

0

1 1
1 θθ

Δ

Implicit approach
works for Eulerian
forms as well

w/. D. Reynolds (SMU) & D. Swesty (SUNY SB)

We apply Newton-Krylov to the space-
discretized form of this DAE system
using the SUNDIALS KINSOL package

52
Lawrence Livermore National Laboratory

We have customized the Newton-Krylov method for the
stellar collapse simulation

  Non-differentiabilities in discretization schemes result in
convergence problems with finite differences
•  Limiters and artificial viscosity increase stability for shocks but

result in discontinuities in the Jacobian
•  Freeze parameters in Newton iteration to smooth Jacobian
•  Approximate Jacobian entries at the start of each iteration

  Form the preconditioner by extracting only the spatially local
entries that couple the variables within a given cell
•  Place them in a block diagonal matrix
•  Solve each block exactly

σ

σ)U(H)eU(H
]v)U(J[

k
ij

k
i

ij
k

H

−+
≈

53
Lawrence Livermore National Laboratory

We had to take care in scaling and constraints

  Unknowns and equations at differing scales can cause
difficulties with stopping criteria
•  Use a weighted RMS norm for convergence:

•  D gives the typical equation magnitude

  Certain variables have positivity constraints which can be
violated in Newton updates or differencing
•  Apply a log transform for density, temperature, and radius

•  Increases nonlinearity but, in practice, this adds only up to 1
Newton iteration

())d,,d(diagD,N)U(DH)U(H N
11

1
2

2
−−== …

)log(~ ρρ =

54
Lawrence Livermore National Laboratory

Implicit approach enabled the first radiation-hydrodynamic
modeling of the entire proto-neutron star cooling

  Initial central density: 5 x 1014 g/cm3

  Initial radiation distribution contributes
½ of pressure support in the star
center and diminishes radially

  Star contracts as neutrinos diffuse out
  NK for neutrino MGFLD as well as

hydrodynamics

Explicit CFL restriction:
Δt ~ 2.5 x 10-8 s => 109 steps
Implicit used Δt ~ 2.5 x 10-5 s

0.1% of the number of explicit steps!

Mass contours show contraction

Neutrino cooling signal
decays over 15s timescale

Reynolds, Swesty, and W., 2008

55
Lawrence Livermore National Laboratory

Newton-Krylov methods have been applied to resistive
magnetohydrodynamics simulations

Magnetic Reconnection
  Breaking & reconnecting oppositely-

directed field lines in a plasma
  Instabilities replace hot plasma core

with cool plasma, halting fusion
  Sweet-Parker reconnection is ~105

times slower than fastest waves

Both applications require large-scale, long-time simulations

Pellet Injection Fueling
  Shoot frozen hydrogen pellets into

the plasma at high velocity ~500 m/s
  Want location of mass deposition
  Pellet motion is ~104 times slower

than fastest waves

56
Lawrence Livermore National Laboratory

We use a conservative form of the single-fluid
resistive magnetohydrodynamics equations

0=⋅∇−⋅∇+∂)U(F)U(FUt υ

Euler eqns
(fluid flow)

Low-freq. Maxwell eqns
(electromagnetic fields) Conservation form + +

=>
Resistive magnetohydrodynamics

fluxesdiffusive
fluxeshyperbolic

=

=

=

)U(F
)U(F

)e,B,v,(U T

υ

ρρ

We view this model as a system of ODEs:

High order BDF time integrator, CVODE, with Newton-Krylov
from SUNDIALS Package

)U(F)U(F)U(f ⋅∇−⋅∇≡ υ

)U(fUt =∂

w/. D. Reynolds (SMU) & R. Samtaney (KAUST)

57
Lawrence Livermore National Laboratory

The implicit approach gave faster solutions than the
original explicit approach on our reconnection problem

  GEM magnetic reconnection
challenge (Brin et al., 2001)

  2D, characteristic velocity is
the Alfven speed

  Small magnetic resistivity and
fluid viscosity

  No preconditioning
  O(Δt5) implicit method
  O(Δt4) explicit Runge-Kutta
Implicit is almost 6x faster than

explicit
Preconditioning further improved

these results

Implicit

Explicit

Reynolds, Samtaney, & W., JCP, 2006

Problem
Size Explicit Implicit

64x32 0.029 0.067
128x64 0.015 0.057

256x128 0.008 0.056
512x256 0.004 0.059

Avg Step Size

58
Lawrence Livermore National Laboratory

KINSOL enabled modeling variably saturated subsurface
flow in numerous contexts

  The Newton-Krylov method in
KINSOL from SUNDIALS
provided the main solver
engine for the PARFLOW
variably saturated subsurface
flow solver

  hypre structured multigrid
preconditioner

  Symmetric approximation to
Jacobian for preconditioning

  Line search globalization
  Dynamic linear tolerances

Jones and W., Adv. Water Res., 2001

() ()()() qzg–ppKk–
t
p

r =∇∇⋅∇ ρ
∂

∂θ

Variably saturated PARFLOW
is used in large-scale, parallel
models of many DOE sites

59
Lawrence Livermore National Laboratory

Availability

Web site:
Individual codes download
SUNDIALS suite download
User manuals
User group email list

The SUNDIALS Team:
Alan Hindmarsh, Radu Serban, Carol

Woodward, and Dan Reynolds

Open source BSD license
https://computation.llnl.gov/casc/sundials

Publications
https://computation.llnl.gov/casc/nsde

